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Decision Making in Complex, Uncertain Domains: A Role for the ‘Not So Expert’ System? 

 

Abstract 

After falling out of favour during the 1990s, advisory expert systems and their underlying artificial 
intelligence (AI) technologies are now being used increasingly in organizational decision making 
activities – particularly, data mining. In this paper, a number of popular AI technologies are evaluated 
with respect to their application in greyhound racing tipping. Parallels between this domain and 
organizational forecasting activities are drawn. Early indications are that the forecasts produced by 
these technologies compare favourably with those of both human experts and previous, relevant 
decision support systems (DSS). Particular emphasis is placed on reducing complexity where possible – 
hence, the ‘not so expert’ system. 

Keywords and phrases: forecasting; artificial intelligence; decision support systems. 

 

INTRODUCTION 

After generating a great deal of excitement during the 1980s, expert systems (and their associated 

artificial intelligence (AI) technologies) failed to deliver much in the way of anticipated benefits and, 

consequently, fell out of favour in many organizations (Luger, 2005; Beemer and Gregg, 2008). A 

fairly common perception – that expert systems had been entirely discredited and had no place in 

serious organizational IT activity – was, however, far from the truth: in particular, underlying AI 

technologies (such as fuzzy logic and neural networks) were gradually integrated into mainstream 

business applications and, in particular, the advent of data mining (Berson et al., 1999) as a key 

decision support tool provided many of these technologies with a new lease of life. 

Major problems confronting early expert system developers were that development tools were 

relatively immature and that the computing hardware of that period was insufficiently powerful to 

support those tools in non-trivial, company-critical applications1. The extraordinary advances in both 

hardware and software over the past 20 years or so have largely eliminated these as relevant problems. 

In addition, as noted by Beemer and Gregg (2008), the evolution of ‘expert’ systems into ‘advisory’ 

systems appears to have resulted in a much greater level of technology acceptance within organizations. 

Our purpose in this study is to evaluate the usefulness of modern AI technology in complex and 

uncertain domains. A related objective is to assess whether the ‘not so expert’ concept2 (proposed by 

Debenham, 1985) might be employed to advantage (particularly with respect to reduced development 

and operational costs). The problem domain chosen was greyhound racing: principally because outputs 

                                                      

1 For accounts of the types of problems encountered with these early applications, see (Debenham and McGrath, 
1983; McGrath and Debenham, 1984). 



  

are absolute (i.e. a dog either wins or it doesn’t and pays one – and only one – amount in the event that 

it does win) and timely (i.e. one does not have to wait months or years to assess outcomes). While, at 

first glance, this problem domain might appear to have little to do with organizational life, several 

researchers (see, for example, Asch et al., 1984) have argued that there are strong similarities with 

racing prediction and some important organizational functions – particularly, various financial 

forecasting activities. 

The paper is organized as follows: in the following section, some background on expert systems and the 

chosen problem domain is presented. This is then followed by sections dealing with our research and 

database designs respectively. Preliminary data analysis results are then presented and this is followed 

by a section detailing results of the application of betting guidelines induced during the initial data 

analysis phase. The final section contains a discussion of results and concluding remarks.  

BACKGROUND: EXPERT SYSTEMS AND THE PROBLEM DOMAIN 

Expert Systems: Evolution 

Rule-based expert systems have been around for a very-long time; since the 1970s at least, with early 

examples including: DENDRAL, designed to infer plausible chemical structures from mass 

spectrographic data (Buchanan and Feigenbaum, 1978); MYCIN, a system for the diagnosis and 

treatment of infectious blood diseases (Shortcliffe, 1976); and R1, devised for the automatic 

configuration of Digital’s VAX range of computers (McDermott, 1980). In turn these early systems 

were built upon foundational AI research in areas such as (declarative) logic programming (Kowalski, 

1979), frame-based knowledge representation (Minsky, 1975), semantic networks (Deliyanni and 

Kowalski, 1979), deductive databases (van Emden, 1978) and intelligent inferencing techniques 

(Pereira and Porto, 1982). 

Early expectations for expert systems were very high. For example, there was a fairly-common belief 

that, by capturing experts’ knowledge in troubleshooting systems such as CATS-13, organizations could 

protect themselves from the loss of essential staff, could improve performance and reliability and 

perhaps, most importantly, could substantially reduce labour costs (Bonnistone and Johnson, 1983). 

Perhaps, all these early hopes and expectations were captured most spectacularly in the massive, 

billion-dollar, Japanese 5th Generation Computer Systems project (Feigenbaum and McCorduck, 

1983). 

                                                                                                                                                                      

2 Essentially, the ‘not so expert’ system is one that conforms to the 80:20 rule – whereby 80% of the functionality 
can be developed with 20% of the effort. 

3 A pioneering expert system designed for diagnosing and remedying problems with diesel-electric locomotive 
engines. 



   

Despite some notable successes, however, many of these early expert system projects were perceived as 

failures. Common problems identified by Luger (2005) included: i) difficulties in capturing ‘deep’ 

problem domain knowledge; ii) a lack of robustness and flexibility; iii) poor explanations of how 

solutions were arrived at; iv) limited means of solution verification; and v) little learning from 

experience. 

Beemer and Gregg (2008) suggest that (partly as a response to this) expert systems have now evolved 

into advisory systems. They distinguish this newer breed of intelligent systems by: their ability to cope 

with unstructured knowledge and uncertainty; the use of case-based reasoning (CBR) in lieu of the 

more traditional rule-based approach; support for iterative decision-making and environment 

monitoring; and the ability to cope more effectively with problem context. In particular, they claim that, 

whereas expert systems tend to focus on a narrow domain and present the user with a recommended 

course of action, advisory systems gradually (i.e. iteratively) guide the user towards a range of 

acceptable options and leave the ultimate decision up to the end-user. 

While one might accept this prescription-advice distinction, we are inclined to the view that the other 

advisory systems distinguishing features detailed above apply just as much to expert systems. 

Moreover, differentiating the two system categories in this way tends to downplay the significance of 

many important, early AI research contributions and, perhaps more unfortunately, reinforce the view 

(all too common in the IT industry) that for something to be worthwhile it must be recent4. 

Nevertheless, it is now generally accepted that applications which satisfy Beemer and Gregg’s (op. cit) 

criteria for advisory systems may lay a greater claim to the label, ‘intelligent’, than those that do not. 

Consequently, over the past 20 years or so, considerable advances have been made in fields such as 

fuzzy logic (Cox and O’Hagan, 1999) neural networks (Rojas, 1996) and various approaches to 

automated learning (Segaran, 2007). In particular, many of these methods and technologies have found 

their way into the various data mining (Berson et al., 1999) software packages now used by 

organizations to gain competitive advantage through business intelligence (BI) (Davenport and Harris, 

2007). 

One interesting result of the integration of these technologies into expert systems, however, is that more 

recent applications have become increasingly sophisticated and complex. A downside to this, of course, 

is that these systems are more costly to build and maintain. Over 20 years ago, however, Debenham 

(1985) proposed the idea of the ‘not so expert’ system, a concept which was, effectively, an instance of 

                                                      

4 With reference to Beemer and Gregg’s (op. cit) distinctions, it is worth noting that (for example) Ross 
Quinlan’s pioneering work on reasoning with uncertainty was first published in 1983 and foundational work on 
CBR by Schank, Minsky and others dates back to the early-1970s (Minsky, 1975; Rieger, 1975). 



  

the 80:20 applications development rule - where 80% of the functionality might be developed with only 

20% of the total effort required (Abdel-Hamid and Madnick, 1991: 197-202). 

This, essentially, is the approach we have taken here. Specifically, we have simplified a problem 

domain containing over 30 relevant variables to one with less than 10. We have, however, made 

extensive use of the technological advances discussed above; in particular, in the areas of rule-based 

development, data mining, CBR and reasoning with uncertainty. 

Problem Domain 

The domain chosen was greyhound racing and, more specifically, meetings conducted in the state of 

Victoria, Australia. The major objective of the system is to predict race winners and place-getters. 

Some of the key variables and dependencies between them are indicated in the causal-loop diagram 

(CLD) presented in Figure 15. 

 

Figure 1: Greyhound racing: some key variables and dependencies. 

Over the years, much research has been conducted into intelligent forecasting and decision support 

systems (DSS) in finance (for recent examples, see: Kim, 2004; Lee, 2004; and Tsang et al., 2004). 

                                                      

5 Note that in CLDs a ‘+’ annotation indicates that the two variables (i.e. the cause and effect variables at either 
end of an arrow) move in the same direction, while a ‘-‘ annotation means that they move in opposite directions. 
Here, some care should be taken with tip, posn and quote variables as, generally speaking, the lower these are, 
the better. 



   

Several researchers (for example Asch et al., 1984; Hausch and Ziemba, 1985; and de la Maza, 1989) 

have noted very strong similarities between financial and horse racing forecasting and, indeed, Tsang 

and his colleagues (Tsang et al., 1998; and Tsang et al., 2004) have applied their EDDIE system (based 

on genetic algorithms) to both domains with considerable success. Much less attention, however, has 

been devoted to applications of intelligent systems in greyhound racing per se (for an exception, see 

Chen et al., 1994). 

Obviously though, there are very strong parallels between horse and greyhound racing: for example, 

form, odds and experts’ tips are very important when making selections; there is exactly the same trade-

off between odds (quotes) and returns; and breeding, trainers’ records, track conditions and the match 

between the object race and a dog’s record over that test (venue and distance) are all vital factors in 

predicting outcomes. However, there are significant differences between the two domains: specifically: 

i) the greyhound racing domain seems to be somewhat more predictable; ii) win and place returns are 

generally lower with the dogs; iii) with eight runners in every race, greyhound racing is more 

standardized; and, perhaps, most importantly iv) a dog’s starting box appears to be very important. 

With respect to this last point, Table 1 details the performance of each starting box, for each test 

considered in our study6. 

Table 1: Box performance by track and distance in the 12 months to 30/4/2008. 

30/04/2008 M etres 1 2 3 4 5 6 7 8

W arrnambool 332 17.7 14.3 13.1 13.1 10.9 5.7 8.0 17.1 100

W arrnambool 450 17.3 12.0 11.8 11.6 8.1 11.8 13.4 14.0 100

M eadows 525 24.3 16.0 11.5 11.0 8.4 8.4 10.3 10.0 100

Ballarat 450 19.4 12.2 9.0 8.3 11.8 10.1 11.1 18.1 100

Ballarat 550 26.2 14.2 12.0 12.0 11.5 6.6 9.8 7.7 100

Geelong 347 19.4 17.1 12.3 10.5 8.8 10.3 9.7 12.0 100

Geelong 457 15.6 11.3 11.3 9.0 12.4 8.9 12.9 18.7 100

W angaratta 403 20.4 18.7 11.6 10.2 5.4 8.5 8.2 17.0 100

W angaratta 474 18.1 14.1 10.5 8.1 13.3 7.7 9.7 18.5 100

Traralgon 298 27.5 12.1 12.8 10.7 9.4 6.7 10.1 10.7 100

Traralgon 513 22.4 14.1 9.0 11.6 10.8 8.2 7.7 16.2 100

Sandown 515 19.1 15.2 13.2 10.0 9.1 8.2 12.0 13.2 100

Cranbourne 311 25.3 13.4 6.5 6.5 10.2 7.5 8.6 22.0 100

Cranbourne 520 13.1 12.4 8.6 11.2 10.5 11.7 12.6 19.8 100

Shepparton 390 20.0 10.2 8.9 6.9 14.1 10.8 12.8 16.4 100

Shepparton 450 14.1 11.4 13.7 11.1 11.8 10.5 12.7 14.7 100

Sale 440 18.6 12.0 11.8 9.2 10.9 10.3 8.7 18.6 100

Sale 520 23.6 12.6 11.0 7.1 12.6 8.7 11.8 12.6 100

Bendigo 430 17.6 11.1 10.3 7.8 10.7 11.8 14.5 16.3 100

Bendigo 545 22.8 19.3 13.8 6.9 13.1 7.6 4.8 11.7 100

20.0 13.7 11.0 10.1 10.4 8.8 10.6 15.4

Box Number

 

A brief glance at Table 1 seems to indicate that, for most tests, dogs that draw inside boxes have a 

distinct advantage, dogs racing from box 8 also seem to do quite well and dogs in the centre appear to 



  

be at something of a disadvantage. It seems reasonable to speculate that dogs racing from the inside 

have to travel less distance and, perhaps, dogs that draw on the extreme outside may get a ‘sit’7. 

Whatever the reason though, it does seem that box position is, indeed critical. 

McNatton (1994) has emphasised just how complex the racing domain is and the importance of 

obtaining expert input when developing intelligent prediction systems in this domain. In addition, 

Tsang et al. (1998) have noted that data input is extremely laborious. Genuine expert input is very 

difficult to obtain8 and, with very limited resources available for data entry, we found ourselves pretty-

much forced to adopt Debenham’s (op. cit) ‘moderately expert’ approach (noted earlier) and restrict our 

analysis to the following variables: test, box, quote, tip, position and return. Form is obviously critical 

and, from Figure 1, it can be seen that it is also quite complex. Our alternative was to use a particular 

expert’s9 tips as a surrogate for this variable. 

RESEARCH DESIGN 

This research was, essentially, exploratory in nature. The questions addressed were: 

Q1: To what extent can modern artificial intelligence (AI) techniques be used to provide useful 

advice in complex and uncertain domains? 

Q2: Can substantially-simplified DSS, constructed using these techniques, produce reasonable 

results (with the consequent benefit of reduced effort – in both DSS construction and 

operation)? 

The AI technologies employed were rule-based expert systems, CBR, data mining and fuzzy logic. 

Additional functionality, based on traditional statistical analysis10 was also employed. A number of 

other AI technologies, such as machine learning systems based on neural networks and genetic 

algorithms (Carbonell et al., 1983), were considered for use but rejected because of the substantial 

increases in complexity and effort this would have entailed (see Q2 above). The greyhound racing 

domain chosen was introduced in the previous section and further detail is provided in the next and 

subsequent sections. 

                                                                                                                                                                      

6 These figures are for the previous 12 months and are readily available from newspaper form guides and the 
Web. 

7 Meaning that they may drop out the back early on, have a very easy run on the rails and, consequently, have 
plenty in reserve to enable them to come home strongly at the end. 

8 i.e. if a punter has real understanding of why one horse (or dog) is likely to win, why share that information? 
For the same reason, it makes no sense to purchase a ‘winning guaranteed’ betting system. 

9 A tipster called the ‘Watchdog’, whose tips for all meetings appear daily in the Melbourne Herald-Sun. 

10 Which also underpinned most of the AI techniques used to some extent. 



   

The beauty of the domain used is, of course, that while the prediction process itself is highly-uncertain, 

outcomes are absolute: i.e. a dog either wins and/or places or it doesn’t! Moreover, outcomes are 

(potentially) available within a few minutes of predictions being made. Finally, the key indicator of 

experimental outcomes is again absolute: i.e the amount of money won or lost. 

Our experiment consisted of the following two stages: 

1. A ‘training database’, constructed from 600 tips (involving 200 races) made by our chosen 

expert tipster was assembled between 4/2-8/3/2008. This database was analysed as detailed in 

the following section, resulting in the induction of four betting guidelines. 

2. The four guidelines were then applied to a ‘test database’ of a further 1404 tips (468) races 

made by our expert, constructed between 11/3-31/5/2008. Profit and loss figures from this 

activity were calculated and analysed as discussed in the penultimate section. 

It should be noted that, while our research appears to have produced some very-interesting results, these 

are preliminary at this point. In particular, substantial additional analysis will be required to validate 

tentative conclusions drawn from the initial application of our induced betting guidelines. On the other 

hand, we suspect that, in part at least, external validity may be strong: i.e. we see no reason why our 

results should not be applied to greyhound racing in other Australian states and, indeed, internationally. 

THE DATABASE 

The specification of the extensional database component is presented (in entity-relationship form) in 

Figure 2. 

Figure 2: Database schema (extensional component). 

A venue generally conducts many race meetings per year and each meeting consists of a number of 

races (10-12) over varying distances (generally no more than 2-3 distances, ranging from around 300m 



  

to 700m). A venue and distance together uniquely identify a test and associated with each of these is a 

set of box performances. All races, barring scratchings, have eight starters, each identified by a number 

corresponding to its starting box. A box performance, then, is the percentage of wins out of that box for 

the preceding 12 months. 

Each starter has unique form (based largely on its recent performances in races) and this, relative to that 

of the other starters, will be the major influence on its tip (predicted finishing position). A quote 

(predicted payout for a win) is also associated with each starter and the quote and tip may mutually 

have an influence on each other. A result is a dog’s finishing position in a race and there is a win and/or 

place payout associated with the first three finishers. 

The database has been implemented in Prolog and this allows the specification of an intensional 

component: essentially virtual relations specified by rules which may also be employed as procedures 

to derive these relations (Kowalski, 1979). These are discussed further in the following section. 

DATA ANALYSIS: TRAINING DATABASE 

Rule-Based Approach 

Using the Flex™ expert system shell (Westwood, 2007) we can represent our database as frames, 

specify domain knowledge in classic production rule form and, then, employ forward or backward 

chaining to infer consequences from facts. For example, we could specify a frame, paying_result, as a 

subtype of a result class and then generate an instance of this frame for every result where there has 

been a payout. An example is: 

instance r0002 is a paying_result ; 

 res_id is 2 and 

 quote is 5.00 and 

 pay_win is 12.10 and 

 pay_place is 2.60 and 

 return_value is average . 

 

We could then declare that a return is considered good_value if the payment for a win is greater that the 

quoted odds. The relevant rule is: 

rule good_value 

 if R is some instance of paying_result 

  and the quote of R is Quote 

  and the pay_win of R is PayWin 

  and PayWin > Quote 

 then the return_value of R becomes good . 

 

Once invoked, this rule will return all instances of good_value results and, in fact, with a little extra 

calculation code added, we may derive the fact that of the 122 training database races where there was 

a winner, only 36.9% represented good value. This is interesting as it may indicate that the quotes in 

the morning paper may be a little too high. 



   

We may also represent rules in the ‘raw’ underlying Prolog. For example, we may be wish to find 

instances of non-winning streaks (sequences of races where the winner was not tipped). Sequences are 

most-naturally represented as lists and lists are the natural data structures of Prolog (Clocksin and 

Mellish, 1981: 41-48). Consequently, we may code our solution as the following recursive rules11: 

R isa nonWinningStreak of 1 if 

 R isa race and R1 isa race and 

 R is the nextRaceAfter R1 and 

 tip 1 won in race R1 and tip 1 lost in race R. 

 

[R1|R] isa nonWinningStreak of N if 

 R1 is the nextRaceAfter [R] and 

 tip 1 lost in race R and 

 [R] isa nonWinningStreak of N1 and N is N1 + 1. 

We have used recursive rules of this type extensively within our system and found them extremely 

useful: for example, for analyzing and computing box advantages. 

Case-Based Reasoning 

CBR is largely based on the premise that, generally speaking, we don’t think logically in if-then-else 

style but, rather, tend to try to match problem situations with previous cases (drawn from our memory) 

and then ‘tweak’ these cases to bring them into line with the current problem (Schank, 1975). 

Assume that (as our ‘target’ case) we are interested in the place chances of a dog racing over 525m at 

the Meadows track (test 3). The dog has been quoted at $2.00, is tipped to finish first and has drawn 

box 1. This time, using our CBR toolkit (Shalfield, 2004), we may set up an input query on our training 

database as illustrated in Figure 3. 

 

Figure 3: A CBR input query. 

Note that (although, not shown in Figure 3) we have made it compulsory that that the tip must exactly 

equal 1 and that the test is 3. However, we have relaxed the constraints on the quote and box number: 

                                                      

11 Represented, for expository reasons, as a ‘quasi’ Prolog procedure. This maps very easily to the underlying 
Win-Prolog 4.700 syntax. 



  

the former because we feel that there are unlikely to be many exact matches on quote = $2.00 and the 

latter because we feel that ‘close’ to the inside is more important that an exact match on box = 1. 

Output from the query (exported to Excel™) is presented in Table 2. The final column displays the 

CBR system’s assessment of the degree of match between the input conditions and each retrieved 

case12. In 14/20 (70%) of these cases the dog placed, with an average return of $1.50. We may, 

therefore, be tempted to conclude that our target case represents a reasonable bet. 

Table 3: Sample CBR query output. 

Box Quote Test Tip PayPlace Posn Match %

1 2 3 1 1.4 2 99

1 1.7 3 1 1.04 2 99

2 2.5 3 1 1.3 1 98

1 2.7 3 1 0 0 98

2 2.8 3 1 1.5 1 97

2 2.8 3 1 1.4 3 97

1 2.8 3 1 1.2 1 97

1 2.8 3 1 0 0 97

1 3 3 1 0 0 96

3 2.8 3 1 1.8 1 95

3 2.6 3 1 1.8 3 94

1 3.3 3 1 1.4 1 92

1 3.3 3 1 0 0 92

3 3.3 3 1 1.5 2 90

3 3.3 3 1 1.4 3 90

3 3.3 3 1 0 0 90

3 3.5 3 1 2.2 3 88

3 3.5 3 1 0 0 88

1 3.6 3 1 1.5 1 87

1 3.6 3 1 1.5 1 87  

The above is a fairly simple (but realistic) example of the application of CBR techniques. As a logical 

follow-up to this analysis, we may wish to restrict box or quote more tightly, relax restrictions on test or 

tip, weight one input variable (e.g. the quote) more highly than others etc. Although much of this can be 

done using CBR, however, this type of induction exercise is more suited to data mining. We address 

this in the following section. 

Data Mining 

Rule induction systems are probably the most common form of data mining application (Shalfield, 

2004a). While CBR is fundamentally concerned with prediction, rule induction involves searching a 

database for ‘interesting patterns’ – which may then be expressed in the form: antecedents � 

consequent. 

                                                      

12 Restricted to the top 20 matches only. 



   

Results of one such search13 are presented in Table 4. We are concerned here with the relationship 

between tips and boxes (antecedents) and results where there is a place payout (consequent). 

Table 4: Data mining – tips, boxes and place results. 

Tip = 1 Tip = 1 Tip = 1 Tip = 1

Measure Box = 1 Box = 2 Box = 1 or 2 Box = 1,---,8

Base 201 201 201 201

Condnl 43 33 76 201

Hits 29 21 50 121

Accuracy 67.44 63.64 65.79 60.2

Coverage 21.39 16.42 37.81 100  

Although the training database contains 603 result table entries, the base is actually 20114. Looking at 

the first column, there are 43 instances where a dog racing from box 1 was tipped to finish first and this 

is the conditional count (condnl). Of these, 29 actually placed and this is the hit count (hits). Accuracy 

is (hits/condnl).100 and, in this case, is 67.44%. Coverage is defined as (condnl/base).100 and is 

21.39% in our example. Accuracy is concerned with the extent to which one can rely on an induced 

rule and coverage is concerned with the extent to which a rule applies. There is a trade-off between 

accuracy and coverage and that is evident to some extent in Table 4. 

In addition to starting boxes and tips, we have discussed a number of other factors that have in impact 

on whether a dog will win or place. We might summise that one of the most important of these is 

quoted odds and results of a data mining exploration focussed on the quote � PayPlace relationship15 

are presented in Table 5. 

In Table 5, the trade-off between accuracy and coverage is demonstrated much more clearly. Where the 

quote is $2.00 or less (column 1), accuracy is a very impressive 82.35% but this applies to only 8.46% 

of the base. If we then move the quote boundary out to $3.00 (column 2), accuracy drops but coverage 

improves substantially. That is, the cumulative statistics indicate that, with the odds limit at $3.00, we 

can now only expect a return in 65.43% of cases. On the other hand, we now have the option of betting 

in over 40% of races. This trend continues through columns 3 and 4. 

As noted, in this preliminary research we have concentrated on place (rather than win) payouts. In 

addition to the impacts of tips, boxes and quotes on PayPlace, we also explored the effects of tests 

(broken down into venues and distances) and various combinations of all parameters. Space does not 

permit the presentation of all these results here but the more-critical relationships discovered were used 

                                                      

13 Undertaken using Win-Prolog’s Data Mining toolkit (Shalfield, 2004a). 

14 Because there are 603/3 (=201) races, with one tip each for places 1, 2 and 3 per race. 

15 Tips are also a factor in this exploration as we have restricted analysis to cases where the tip is 1. 



  

to instantiate uncertainty factor parameters in our prediction engine. We now provide a brief 

introduction to how uncertainty may be dealt with in intelligent systems of this type. 

Table 5: Data mining – quotes and place results. 

Measure 0 - 2.00 2.01 - 3.00 3.01 - 4.00 4.01+

Base 201 201 201 201

Condnl 17 64 89 31

Hits 14 39 47 11

Accuracy 82.35 60.94 52.8 35.48

Coverage 8.46 31.84 44.28 15.42

Cumulative:

Condnl 17 81 170 201

Hits 14 53 100 111

Accuracy 82.35 65.43 58.82 55.22

Coverage 8.46 40.3 84.6 100

Quote

 

Reasoning with Uncertainty 

As noted earlier, modern expert systems are expected to be able to cope with uncertainty (to some 

extent anyway). Briefly, given a rule: 

if Q1 and Q2 then P 

we need to be able to deal with: i) imprecise data (Q1 and Q2); ii) rule uncertainty (how often do Q1 and 

Q2 imply P); and iii) imprecision in general. Fuzzy logic (Zadeh, 1968) is one popular approach to this 

problem. 

Essentially, fuzzy logic provides a precise (or mathematically sound) means of dealing with real-world 

imprecision (Negoita, 1985). For example, we could specify that a dog’s quoted odds are ‘short’ if they 

are $2.00 or less and establish rules based on that unambiguous fact. However, is there really much 

difference between a quote of $1.99 and $2.01? Fuzzy logic deals with this by assigning degrees of 

membership to fuzzy set elements. With our example, we could represent this graphically as illustrated 

in Figure 4. Thus, a quote of $2.90 is short to some extent but is much closer to an ‘average’ quote.  
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Figure 4: Flint™ specification of the fuzzy variable, odds_value. 

 



   

Having also specified box_adv and place_choice as fuzzy variables, we may the use the Flint™ fuzzy 

logic toolkit (Shalfield, 2005) to declare the rules that combine instance of these as a ‘fuzzy matrix’. 

The system then takes ‘crisp’ (actual) values for odds_value and box_adv, ‘fuzzifies’ these, calculates a 

fuzzy value for place_chance, ‘de-fuzzifies’ this and, finally, returns its calculated place probability (as 

a percentage). Data mining outputs were used to inform the critical fuzzy variable specification activity 

– particularly box_adv. It is intended that an extended version of the simple fuzzy logic system 

described here will be employed as an integral component of our prediction engine. At this early stage 

of our research, however, betting guidelines used for system validation have been expressed in crisp 

(rather than fuzzy) terms. We now turn our attention to validation activity. 

PRELIMINARY BETTING GUIDELINES AND VALIDATION 

Guidelines 

The training database contains some 600 cases (tips/predictions) involving 200 races. Complete results 

of the analysis of the testing database are presented in Table 6. 

Table 6: Test database – analysis results summary. 

Quote BoxAdv Tip Cases Wins AvWin Places AvPlace Outlay WTotal PTotal

0-2.00 + 1 10 6 1.48 8 1.16 10.00 8.88 9.28

0-2.00 + 2-3 0 0 0.00 0 0.00 0.00 0.00 0.00

0-2.00 0 1 39 23 2.15 31 1.27 39.00 49.45 39.37

0-2.00 0 2-3 6 2 2.45 3 1.15 6.00 4.90 3.45

0-2.00 - 1 3 2 2.95 3 1.40 3.00 5.90 4.20

0-2.00 - 2-3 0 0 0.00 0 0.00 0.00 0.00 0.00

Group 

Totals 58 33 45 58.00 69.13 56.30

Pct 56.90 77.59

2.01-3.00 + 1 47 17 2.48 35 1.37 47.00 42.16 47.95

2.01-3.00 + 2-3 27 13 2.93 17 1.45 27.00 38.09 24.65

2.01-3.00 0 1 162 59 2.81 109 1.47 162.00 165.79 160.23

2.01-3.00 0 2-3 82 21 3.58 46 1.54 82.00 75.18 70.84

2.01-3.00 - 1 13 6 2.67 9 1.41 13.00 16.02 12.69

2.01-3.00 - 2-3 4 0 0.00 2 1.65 4.00 0.00 3.30

Group 

Totals 335 116 218 335.00 337.24 319.66

Pct 34.63 65.07

3.01-4.00 + 1 17 7 2.70 14 1.35 17.00 18.90 18.90

3.01-4.00 + 2-3 25 3 2.73 10 1.41 25.00 8.19 14.10

3.01-4.00 0 1 60 11 3.65 39 1.70 60.00 40.15 66.30

3.01-4.00 0 2-3 118 21 3.76 68 1.63 118.00 78.96 110.84

3.01-4.00 - 1 0 0 0.00 0 0.00 0.00 0.00 0.00

3.01-4.00 - 2-3 5 2 4.10 5 1.70 5.00 8.20 8.50

Group 

Totals 225 44 136 225.00 154.40 218.64

Pct 19.56 60.44

4.00+ + 1 16 2 3.15 8 1.61 16.00 6.30 12.88

4.00+ + 2-3 90 13 6.35 41 1.95 90.00 82.55 79.95

4.00+ 0 1 67 11 4.67 31 1.95 67.00 51.37 60.45

4.00+ 0 2-3 480 58 6.92 210 2.03 480.00 401.36 426.30

4.00+ - 1 2 0 0.00 1 1.80 2.00 0.00 1.80

4.00+ - 2-3 50 4 9.65 18 2.21 50.00 38.60 39.78

Group 

Totals 705 88 309 705.00 580.18 621.16

Pct 12.48 43.83

Totals 1323 281 708 1323 1140.95 1215.76  

 



  

The analysis of the training database was covered in the previous section and this resulted in a number 

of conclusions, presented below as tentative guidelines: 

G1: If the quoted odds are in the 0-2.00 range, bet for a win. 

G2: If the quote is in the 0-3.00 range and tip = 1, bet for a win and place16. 

G3: If the quote is in the range 3.01-4.00 and tip =1, bet for a place only. 

G4: If the quote is greater than 4.00, don’t bet. 

Essentially, this data represents the view (and performance) of our expert tipster and, in summary: i) of 

the 1323 tips, 281 were winners (21.24%) and 708 managed a place (53.51%); and ii) the overall ROI 

was 86.24% for a win and 91.90% for a place. Interestingly, our expert’s performance compares very 

favourably with the panel of three tipsters employed by Chen et al. (1994) in testing their ID3 system: 

specifically, their win bet ROI was only 65.0%. 

Validation 

Results of the application of guidelines G1-G4 to our test database are presented in Table 7. 

Table 7: Guideline application results summary. 

Guideline Cases Wins Win% Places Place% Outlay WTotal PTotal

G1 58 33 56.90 45 77.59 58.00 69.13 56.30

G2 274 113 41.24 195 71.17 274.00 288.20 271.72

G3 77 18 23.38 53 68.83 77.00 59.05 85.20

G4 705 88 12.48 309 43.83 705.00 580.18 621.16

Actual 

Bets Only 409 98 248 683.00 357.33 356.92  

Note: Italics indicate bets not place and where hypothetical data is provided for information only. 

With respect to guideline G1, betting for a win only where the quote is in the $0-2.00 range, yields a 

return of $69.13 on a $58.00 outlay (ROI = 119.19%). This indicates that the strategy shows promise 

but, since only 4.38% of betting possibilities are within this quote range, it can only be applied rarely. It 

is also interesting that, even with very low average returns, place betting would result in an ROI of 

97.07% (with a very high success rate of 77.59% - see Table 6). Obviously though, with so very few 

cases to work with, considerable care should be taken in basing any major investment decisions on this 

limited set of results. 

On the other hand, guideline G2 can be applied in 332 cases (25.09%). Here, win and place betting 

yields ROIs of 105.18% and 99.17% respectively, an overall return of 102.18%. Moreover, referring to 

                                                      

16 Obviously, this overlaps with G1 to some extent. 



   

Table 6, it appears that win and place betting on tips 2 and 3 might also be appropriate in this range 

provided the dog has a box advantage. Again, however, further data is required. 

With guideline G3, place betting on dogs tipped to win in the $3.01-4.00 range yields an ROI of 

110.65%, suggesting the strategy has promise. As with G1, coverage here is low (77 out of 1,323 cases 

= 5.82%). Table 6 suggests though, that betting for a win in this range where there is a box advantage 

(and tip = 1) might also be worth further investigation. 

Finally, our tentative suggestion that betting of any sort should be avoided where the quote is over 

$4.00 (guideline G4) appears sound, as the ROIs in this range are 82.30% for a win and 88.11% for a 

place. The downside is that 705 cases (53.29%) are covered by this guideline, a significant negative if a 

punter is betting principally for enjoyment and entertainment. It might also be worthwhile undertaking 

a finer-grained analysis of results within this range. 

DISCUSSION AND CONCLUSION 

Returning now to the research questions presented earlier, it would appear that our results do, indeed, 

suggest that modern AI techniques can be used to good advantage in complex decision making – at 

least, in the domain investigated. Specifically, application of our four induced betting guidelines 

yielded an overall return of $714.25 for a $683.00 outlay (ROI = 104.58%). This is substantially better 

than Chen et al. (1994) achieved with their ID3 system and, in addition, is better than the performance 

of the expert tipster we employed as a surrogate for form (32.65% of winners tipped for an ROI of 

90.86%). 

Moreover, adopting this tactic (i.e. using a surrogate for form – and all the factors that impact on that 

variable) did enable us to greatly simplify the design, construction and use of our DSS. Notably, the 

intensional component of our knowledge base was reduced to a few simple rules and some 

accompanying Prolog code (used principally for calculation and list manipulation). Most of the 

complexity encountered during our study was in the rule induction process (conducted, primarily, as a 

data mining exercise) and most of the (hard-slog) work involved was in constructing the extensional 

component of the knowledge base (mostly routine data entry of key pre-race data and post-race results). 

Thus, the tentative answer to research question Q2 is ‘yes’: i.e. a ‘not so expert’ system may well be 

able to provide good and useful advice in a complex and uncertain domain. In effect, of course, our 

approach has been to build upon the distillation of a specific expert’s output without looking into the 

detail too much (a ‘black box’ approach in fact). 

Much remains to be done however. Firstly, substantial extra data needs to be gathered and analysed in 

order to confirm the veracity of our guidelines and to explore the potential of additional observations 

made during testing (a couple of which were noted in the previous section). Secondly, there appears to 



  

be great scope for the application of alternative betting strategies (particularly those based on sequence 

betting) and it should be possible to do this without much additional data entry and maintenance costs. 

Finally, as noted earlier, we suspect that our research results (and DSS) probably could be applied to 

greyhound racing in other Australian states and territories outside Victoria and, probably, 

internationally. The extent of the external validity of our results in other domains, however, is an open 

question – although, we expect that our system could well be adapted for application in stock market 

prediction and other financial forecasting applications. 

REFERENCES 

Abdel_Hamid, T. and Madnick, S.E. (1991). Software Project Dynamics: An Integrated Approach, Prentice Hall: 
Englewood Cliffs, NJ. 

Asch, P., Malkiel, B.G. and Quandt, R.E. (1984). Market Efficiency in Racetrack Betting, Journal of Business, 
Vol.57, No.2, pp. 165-175. 

Beemer, B. A. and Gregg, D.A. (2008). Advisory Systems to Support Decision Making, Handbook on Decision 

Support Systems, Springer: Berlin, pp. 511-528. 

Berson, A., Smith, S. and Thearling, K. (1999). Building Data Mining Applications for CRM, McGraw Hill: New 
York. 

Bonnistone, P.P. and Johnson, H.E. (1983). Expert System for Diesel Electric Locomotive Repair: Knowledge-

Based System Report, General Electric Company, New York. 

Buchanan, B.G. and Feigenbaum, E.A. (1978). DENDRAL and Meta-DENDRAL: Their Applications Dimension, 
Artificial Intelligence, Vol.11, pp. 5-24. 

Carbonell, J.G., Michalski, R.S. and Mitchell, T.M. (1983). An Overview of Machine Learning, in (R.S. 
Michalski, J.G. Carbonell and T.M. Mitchell eds.), Machine Learning, an Artificial Intelligence Approach, Tioga 
Publishing: Palo Alto, CA, pp. 3-23. 

Chen, H., Rinde, P.B., She, L., Sutjahjo, S., Sommer, C. and Neely, D. (1994). Expert prediction, Symbolic 
Learning, and Neural Networks: An Experiment on Greyhound Racing, IEEE Expert, Vol.9, No.6, pp. 21-27. 

Clocksin, W.F. and Mellish, C.S. (1981). Programming in Prolog, Springer-Verlag: Berlin. 

Cox, E. and O’Hagan, M. (1999). The Fuzzy Systems Handbook: A Practitioner’s Guide to Building, Using and 

Maintaining Fuzzy Systems, Morgan Kaufmann: San Francisco, CA. 

Davenport, T.H. and Harris, J.G. (2007). Competing on Analytics: The New Art of Winning, Harvard Business 
School Press: Boston, MA. 

Debenham, J. K. (1985). Knowledge Base Engineering, Proceedings of the Eighth 

Australian Computer Science Conference, Melbourne, 1985. 

Debenham, J.K. and McGrath, G.M. (1983). Systems Development with Logic, Proceedings of the Tenth 

Australian Computer Conference, the Australian Computer Society, pp. 187-196. 

Deliyanni, A. and Kowalski, R.A. (1979). Logic and Semantic Networks, CACM, Vol.22, No.3, pp. 184-192. 

van Emden, M.H. (1978). Computation and Deductive Information Retrieval, in (E. Neuhold, ed.), Formal 

Descriptions of Programming Concepts, North Holland: New York, pp. 421-440. 

Feigenbaum, E.A. and McCorduck, P. (1983). The Fifth Generation: Artificial Intelligence and Japan’s Challenge 

to the World, Michael Joseph: London. 

Hausch, D.B. and Ziemba, W.T. (1985). Costs, Extent of Inefficiencies, Entries and Multiple Wagers in a 
Racetrack Betting Model, Management Science, Vol.31, No.4, pp. 381-394. 

Kim, K.J. (2004). Toward Global Optimization of Case-Based reasoning Systems for Financial Forecasting, 
Applied Intelligence, Vol.21, No.3, pp. 239-249. 



   

Kowalski, R.A. (1979). Logic for Problem Solving, North Holland: New York. 

Lee, R.S.T. (2004). iJade Stock Advisor: An Intelligent Agent Based Stock Prediction System Using Hybrid RBF 
Recurrent Network, IEEE Transactions on Systems, Man and Cybernetics, Vol.34, No.3, pp. 421-428. 

Luger, G. (2005). Artificial Intelligence: Structures and Strategies for Complex Problem Solving, Addison 
Wesley: Reading, MA. 

McDermott, J. (1980). R1: A Rule-Based Configurer of Computer Systems, Technical Report CMU-CS-80-119, 
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA. 

McGrath, G.M. and Debenham, J.K. (1984). A Fifth Generation Pilot Project”, Proceedings of the Australian 

Computer Conference 1984, the Australian Computer Society, pp. 389-403. 

McNatton, S.W. (1994). HOBBES: A Predicting Expert System for Thoroughbred Horse Racing, Research Thesis, 
University of Kentucky. 

de la Maza, M. (1989). A SEAGUL Visits the Racetrack, Proceedings of the 3rd International Conference on 

Genetic Algorithms, Morgan Kaufmann, pp. 208-212. 

Minsky, M. (1975). A Framework for the Representation of Knowledge: The Psychology of Computer Vision, in 
(P. Winston ed.), McGraw Hill: New York, pp. 211-280. 

Negoita, C.V. (1985). Expert Systems and Fuzzy Systems, Benjamin/Cummings: Menlo Park, CA. 

Pereira, L.M. and Porto, A. (1982). Selective Backtracking, in (K.L. Clark and S.A. Tarnlund eds.), Logic 

Programming, Academic Press: London, pp. 107-114). 

Quinlan, J.R. (1983). Inferno: A Cautious Approach to Reasoning with Uncertainty, The Computer Journal, 
Vol.26, No.3, pp. 255-269. 

Rieger, C. (1975). Conceptual Menory, in (R. Schank ed.), Conceptual Information Processing, North Holland: 
Amsterdam. 

Rojas, R. (1996). Neural Networks: A Systematic Introduction, Springer: Berlin. 

Segaran, T. (2007). Programming Collective Intelligence: Building Smart Web 2.0 Applications, O’Reilly Media: 
Sebastapol, CA. 

Schank, R. ed. (1975). Conceptual Information Processing, North Holland: Amsterdam. 

Shalfield, R. (2004). Win-Prolog 4.700: Case-Based Reasoning (User Reference Manual), LPA Ltd: London, UK. 

Shalfield, R. (2004a). Win-Prolog 4.700: Data Mining (User Reference Manual), LPA Ltd: London, UK. 

Shalfield, R.(2005). Win-Prolog 4.700: Flint Reference Manual, LPA Ltd: London, UK. 

Shortcliffe, E.H. (1976). Computer-Based Medical Consultation: MYCIN, Elsevier: New York. 

Tsang, E., Butler, J.M. and Li, J. (1998). EDDIE Beats the Bookies, Journal of Software Practice and Experience, 
Vol.28, No.10, pp. 1033-1043. 

Tsang, E., Yung, P. and Li, J. (2004). EDDIE-Automation, a Decision Support Tool for Financial Forecasting, 
Decision Support Systems, Vol.37, No.4, pp. 559-565. 

Westwood, D. (2007). Win-Prolog 4.700: Flex Reference Manual, LPA Ltd: London, UK. 

Zadeh, L.A. (1968). Fuzzy Algorithms, Information and Control, Vol.12, pp. 94-102. 

 

 

 


